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Three-dimensional sub- and supersonic flows of gas in nozzles and channels of 
varying cross section are analyzed. The inverse problem of the theory of Lava1 

nozzles is formulated and extended to three-dimensional flows. An implicit three- 
point difference scheme with varying pitch along a layer is proposed. In the 

neighborhood of the surface for which the Cauchy data are specified an asympt- 
otic series expansion in terms of the stream-function is derived and the method 

of solving related equations is indicated. Examples of calculations of three-di- 
mensional flows in nozzles are presented. Papers [l - 31 dealing with three-di- 

mensional supersonic flows in nozzles and paper [4] in which an analytical sol- 
ution is derived for the flow in the neighborhood of the nozzle center should be 

noted among recent publications. 

1. Fundamental equation: rnd ltrtement of problem. Weintroduce 
a system of curvilinear coordinates linked with the curve y = f,, (s) lying in the zg- 
plane. The coordinates of a point are defined in this system by the arc length S, the 

distance r along the normal to this curve, 
and by the angle q in a plane normal to it 

We transform the equations of gasdynamics 
of coordinates s, r and q 

Fig. 1 

[S] by passing to new independent variables 
9 and 0 such that $ = const and 8 = const 
represent stream surfaces which can be in- 
traduced for analyzing three-dimensional 
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stationary flows [C;& Using calculation similar to those in fl - 93, we obtain for the 

determination of the seven dependent variables U, u, w, p, p, r and Cp , as functions 

of independent variables s, 9 and $ , the following system consisting of five differential 
equations in partial derivatives.and of two finite relationships: 

(1.3) 

(1.4) 

(1.5) 

(1 J-9 

(1.7) 

G(s,%$) = u au __ IL2 cos rp W= 

1$ r / H cos cp ds + H (1 T r / H co9 cp) 
-- 

r 

Here y is the adiabatic exponent; u, u and w are projections of the velocity vector on 
the axes of the curvilinear system of coordinates s, r and rp,respectively, normalized 
with respect to the critical speed of sound a, ; p and p are respectively the pressure 
and the density of fluid, normalized with respect to pressure p* and density p* in the 

nozzle critical cross section; parameters with dimensions of length are normalized with 
respect to a certain characteristic length r* and the stream-function with respect to 

p.+a,r,2; R (3) is the radius of curvature of curve f,, (s). 
For W 5 0 and f4 = 00 the system (1.1) - (1.7) reduces in the general case to the 

system of equations which was used in [S] for numerical solving the inverse problem of 
the Lava1 nozzle of plane and axisymmetric configuration. The absence in Eq. (1.3) of 

derivatives with respect to 9 is important for the subsequent analysis. 
In the general case of three-dimensional flow the inverse problem of the nozzle theory 

can be formulated for the system (1.1) - (1.7) as follows, Let the distribution of the 

velocity component u = II.. (s, 6) be specified in plane r = r. (s, 0) and that of 

zu = w,, (0, I$) and of coordinate rp = CJYI~ (0, 9) in plane s = so. We have to deter- 
mine the family of stream surfaces and the flow parameters in the neighborhood of the 
reference stream surface. 

The significant difference from the corresponding problem of plane and axisymmeRic 

flows is that in this case it is not sufficient for solving the Cauchy problem to specify 
the stream data only at the stream surface, since the latter is a boundary layer surface. 
The two supplementary and the three compatibility equations [lo] are in this case in- 
sufficient for the determination of flow parameters for the next layer (stream surface), 
since it is necessary to solve for the latter the system of Eqs, (1.3), (1.5) in partial de- 
rivatives for which boundary conditions are not stated. 

Hence initial conditions have to be formulated not only at the stream surface but also 
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at some surface different from the latter. Such statement of the inverse problem makes 
it possible to derive a unique solution and is, in a sense, equivalent to the statement 

of the inverse problem of plane vortex or axisymmetric flow, since for the latter it is 

also necessary to specify certain data (entropy distribution) in the reference plane. It is 

important to note that the specification of all velocity components at the stream surface 

results only in overdetermination. 

2. Serle~ exprn,fon in terma of the :trermfunctlon, Let us derive 
the solution of system (1.1) - (1.7) for the neighborhood of the reference surface II? = 

= 0 in the form of series expansion in terms of the streamfunction. Let us express the 

parameters U, v, w, p: p, rp and r in the form [8] 
N N 

f (s, q,, e) = 2 fn (s, 0) 9” + fqJ 2 fn” (ST 0) v (2.1) 
n=u n=” 

where f (s, I$, f3) is any of the above functions. Substituting relationship (‘L. 1) into the 
system (1.1) - (1.7) and equating the coefficients at like powers of 4, for the determin- 

ation of functions f, (s, 0) and f,” (s, 0) , we again obtain a system of equations in 
partial derivatives but with only two independent variables S and 6. 

1. Derivation of solution in the case of r. (s, 6) # 0. For thede- 

termination of functions to (s, 0) we have the system (1.1) - (1.7) in which we denote 

all dependent variables by a zero subscript. Since all unknown functions, including w,, 

and cpO! are specified in the plane s = so, hence the system (1. 3), (1.5) can be numer- 

ically integrated with respect to s over several planes 0 ~7 const, , and it is possible 
to determine functions w. (s, 0) and ‘p. (s, 0) throughout the reference plane v = 

= con& and then determine functions po, p. and co. from relationships (1.4) (1.6) 

and (1.7). 
We note that in an axisymmetric flow free of twist ((17 = 0, R = -0) the problem is 

considerably simplified and it is possible to determine functions uo, p. and PO directly 
from (1.4), (1.6) and (1.7). It is also important that for ZL = U, (s), r = ~0 (s) and 

R (9 -+ 33, even if in the reference cross section s = SO functions lug and ‘p. vanish, 
they remain nonzero for any other S, since for R + x system (1.3) (1.5) is nonhomo- 
geneous. This means that a twist of the nozzle axis always results in the appearance of 

a peripheral velocity component. 
It can be shown by simple but cumbersome calculations that the system of equations 

defining functions foe (s, 0) is homogeneous with respect to these functions, while the 

specification of ~7’~ (so, 0) and ‘poO (so, 0) in the reference plane determines in the latter 

all remaining functions foe (so, 0). Owing to the homogeneity of the related systems, 

it is obvious that all functions f,,” (So, 0) 3 0 when u,,,’ (so, H) = ‘poo (so, 0) ZG 0 . 
The specification of.condition woo (so, 0) = (P,, (so. 0) ;: 0 is physically justified, 
since it is difficult to visualize flows with infinite derivatives dw / all, and dcp / i@ in 
regions away from the axis of symmetry of the reference plane. 

Let us now consider the method of determining functions fi (s, 0). 
In the case of axisymmetric flows free of twist the pertinent linear equations are sim- 

ilar to those presented in [S], and the determination of function fi necessitates only 
the differentiation of the known functions LL~ (a) and r. (s). However in the case of a 
three-dimensional flow it is still necessary to solve the Cauchy problem for s and for 
the determination of functions wi and ‘pi to numerically integrate the system of 
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equations concerned. In fact, it can be readily shown that any of the unknown functions 
can be represendted in the form 

fi (8, 0) = a0 (a7 0) + % b, 0) q + a, (8, 0) q1 

where ai (s, 0) are functions of known parameters f. (a, 0) and their derivatives with 
respect to s and 8. The related system of linear equations becomes now a Cauchy system 
with the condition that w, (so, 0) and ‘ps (a,,, 0) are specified at the reference plane 
s = Ss . The validity of the proposed statement of the inverse problem for the three- 

dimensional case with rO (a, 0) # 0 is thus proved. 

2. *Derivation of solution in the case of r,, (s, (3) s 0. For thede- 

termination of functions f,, (s, O), fi (s, 0) and f,,’ (s, b) we have the following system 

of equations: &II” 
UOO = no &- , 

a’po 0 
37 = $io 9 

L 
roe = po140a~o 180 (2.2) 

poo = T r Pou&o2 cos ‘PO 
R , pl=- 2 

ro~uoaipo/ a0 x 

X(+1 u. T T uo2LooR-= + 2u,,un” cos q+,R-l - two”)-” x 
. - 

x (ro”)-ll + roouo (2g)-1 (p;!!g _&g) + 

+ PO0 (roouoP + uorl) t- Looroouo~ooff-l I (2.3) 

1 - 1 (i darl -- 
T TPO ae _froo~+pl g- ape 

‘l_ + 1 
++(p,“!L&-r~tf$l) (ST%)} 

PO0 1 pIlo PO0 
-crPo, uoo=-.-.--, 
PO +rPoUo 

Lo” = roe cos (Pn 

L O= 01 - cos ‘PO ‘PO0 
We note that at r,” EG 0 from (2.2) follows that woo = u. 3 0 . Final formulas for 
fOo, fo, fi and fi” in the case of axisvmmetric flow are given in [8j. 

Let us first consider the case of R = 00 , for which from (2.2) and (2.5) we have 

PO0 = poo = uoo G 0. It can be shown by simple, although cumbersome, calculations 

that for R = 00 the system of equations defining functions cp,,O, rl, v, and w, is homo- 

geneous, and for ~Po%o, e> = WI (SO, 0) 3 0 yields the unique solution 

‘poo (8, e) = w1 (s, e) = U, (s, e) = r1 (s, e) z 0 

analogous to that for an axisymmetric fIow free of twist. 
The derivation of solution for functions v,“, r,“, pl, ‘p. and woo for the determin - 

ation of which we have Eqs. (2.2) - (2.5), proves to be far from trivial, It appears that 
Eq. (2.5) can be reduced to the form 

82 
ZF ( a$) + m, (5 e) & (F) + CD, (s, e) F + a2 (h 0) = 0 (2.6) 

where @i (S, 0) are known functions which can be calculated in the plane s = COnSt, 
if wOoand ‘PO are known and function no (s) is specified. To find the derivative 
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a~,,’ / 13s on any plane s = cvust it is necessary to solve numerically the boundary 
value problem for the ordinary differential equation (2.6). Owing to the periodicity of 
function woo (6) the boundary conditions for C?W,,’ / ds are that it must vanish in planes 
of symmetry. It is important to note that, when solving asymptotic equations for the 

vicinity of the reference surface, we determine not only the sought functions but also 
the derivative acp / o’\c?. 

Solution of the nonlinear equations in partial derivatives derived in subsections 1 and 

2 can generally be obtained only by numerical integration, although it is sometimes 

possible to obtain a solution in.the closed form. 

Let us derive an approximate solution of the system (2.2) - (2.5) for H = 00 by the 
method of small perturbations. We represent functions ‘pO, r,,‘, v,“, woo and pi in the 

form 
‘co = 0 + &PO1 (s, 0) + a2902 (s, 0) + .** 

roe = rooo (s) f- erOlc (s, 0) + E2r02’ (s, 0) + . . . 

2roo = &11’01@ (s, d) -I- &%L’020 (s, 0) -j- . . . (2.7) 
voO -- vooo (S) -+ FUOlo (S’, 0) + F2Y020(.Y, 8) -I- . . . 

p1 L= r_‘lo (3) -I- “pII (S, 0) + E’& (S, 0) + . . . 

where E is a certain small parameter. This form of presenting the unknown functions 
is based on the physically valid assumption that for the same distribution of velocity 

U0 (s) along the axis the difference in the reference plane between the parameters of a 
three-dimensional and those of an axisymmetric flow is small. The substitution of rela- 

tionships (2.7) into the system (2.2) - (2.5) and the linearization of the latter yields the 

following equations: 
Too0 (s) = (2 / PonoPt uooo (s) = uOdrO~ (s) / ds 

PlO (s) = - &j 9 
acpol 

roo” ae = - 2rolo, uol = u. $$, acpol 
uorooo as = Wolo 

s (rooo 
wolo) _ ; am dm” 

‘\ 
----_ 

0 @VOl 
ae ds 00 asae J 

(2.8) 

(2.9) 
The system of equations defining the coefficients at E2’can be similarly derived. Form- 
ulas (2.8) which coincide with the corresponding formulas for an axisvmmetric flow 
free of twist (see [8]), make it possible to determine functions r,, (s), VW (s) and 
Pi0 (s) by using finite relationships or by differentiating known functions with respect 

to s . 
An important property of the system of Eqs. (2.9) in partial derivatives is their linea- 

rity which makes it possible to find the solution by the Fourier method of separation of 
variables. As the result we obtain to within terms of order &2 the following approximate 

‘po (S, 8) = 8 -t E 5 0 

roe” (‘so’2w01k (“‘) f pods $- (pOlk (so) sin ke 
k=o S” 1 

K 

1 - woo0 (so) 2 h- (Polk (4 
pods + - Rw” (So) I I 

cos k0 
k=o 
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(2.10) 

K 

woo (s, 0) = WOO0 ($0) [LOO* (S)l-’ 2 2&k (SO) sin k0 
k==o 

where W~~C (so) and yolk ($3 are the Fourier coefficients in the expansions of input func- 

tions UJo” (Q, 6) and (PO (SO, 0) in terms of sin /CC!!. It follows from relationships (2.10) 

that the shape of the cross section can be altered by varying at S = SO the input data 

w& (SO) and (Polk (So). These relationships also imply that, if at S = so we set Q)olk 

(So} = 0, the nozzle cross section is in tha_t plane circular, while with increasing s it 

loses its axial ~rnrne~ and assumes the form determined by the input value of t&k 

(so). Unlike in the axisymmetric case, droo / 8s lees, is now a function of 6 . If all 

L&k (so) Z’Z 0, except u&s (so), then obviously a three-dimensional flow has two planes 

of symmetry and for will (so) # 0 it has one such plane. Formulas (2.10) are evidently 

valid for calculating subsonic, as well as mixed transonic flows. A similar solution can 
be derived in the case of r o ES 0 and R # oc using, for example, 1 / R for E . It 
can be shown that in this case a nozzle of circular cross section in the reference plane 
remains circular to within 8’ in all other cross sections. Its axis is, however, curvilinear 

in accordance with the law R = R (s). 

3. Dlff6rmaa tahema for rolvtng the fnvertcr problem of thr 
Lavrl nosrie theory and exrmpler of aos&lrsr of nonairaulrr afo#@ 
seatfous, The derivation of this scheme for numerically solving the inverse problem 
of three-dimensional flow is analogous to that used in 181 for the axisymmetric case. The 

implicit three-point scheme, proposed there, of second-order accuracy and with a vari- 

able pitch on layers rp = cons& ensures stable solutions in the subsonic region, where 

the Cauchy problem for elliptic equations is generally impoper, as well as in the tran- 
sonic and supersonic regions. Below we present only the extension of this scheme to three- 

dimensional flows without specific proof, which can be found in [8-J. 

We denote layers q = const and planes 0 = const and s = const by subscripts n, 1 

and 1 respectively. Let us assume that all parameters u, v, w, p, p, r, ‘p and dq 1 a$ are 
known in the layer qI, = const and in the planes L and J defined, respectively, by 
s = const and % = con&. The L , as well as the I -planes are generally not equi - 
spaced. The calculation of parameters in the layer *Jfn+l = const is carried out by the 
method of iteration in the It) - and s -directions, as follows. First, using formulas 

(3.2) 
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we successively determine in each iteration the magnitudes $$n+,j, ~j;(),,+~) and v!;{~+,), 
In these equations Y is the iteration number and ~9 is the pitch of the difference scneme 

in the 9 -direction. In the first iteration (Y = 1) functions with superscript (Y - 1) are 

assumed to be equal to the corresponding runctions in the nth layer, and in all subse- 
quent iterations the parameters derived in the preceding iterations are used. 

Then, using the known in the (n + 1) -st layer parameters ~,(;()~~+r~, r$~,,+r) and ~~~:~+r), 

starting from the plane s - sn .we integrate in the s -direction over all .I- planes (except 

planes of symmetry) the system of Eqs. (1.3) and (1.5) whose right-hand sides now depend 

only on the unknown functions w and cp. Parameters w,$~~)(~+~) and ~j;;~IjCn+l) are de- 
termined in each of the r-planes at the (U $ i)-st layer u)~+~ and in the plane sCl+,) 

respectively, by formulas 

where i is the iteration number and As is the pitch of the difference scheme in the 
s-direction. In the first iteration (i = i) functions with superscript [v (i - 1)] are ass- 

umed to be equal to the corresponding functions in the preceding SI -plane. and the 

parameters derived in the preceding iteration are used in all subsequent iterations. 

Integration of the system (1.3). (1.5) in the s -direction is carried out from the ref- 

erence plane s = sO, in which functions w (9, 0) and ‘p (9, 0) are specified, up to a 

certain end-plane s = sh, Having determined functions p, r, w, v and 9 .in the Y th 

iteration, from formulas (1.6) and (1.7) we find ZA and p . If the difference of values 
of all unknown functions obtained in the 1: th iteration and those in the (v - l)-st iter- 

ation is outside the required accuracy. the (V +I) -st iteration is carried out. In the 

(Y + 1) -st iteration we again use formulas (3.1) - (3.3) for calculating functions p, r 
and v in the (n + I)-st layer and then numerically integrate system (1.3) (1.5) (form- 

ulas (3.4) and (3.5)) with respect to s and determine functions 1~ and ‘p. ‘The 1’ - and 
i - iterations are completed on reaching the required accuracy. This is followed by 

calculations of the next layer y = const. 
It is expedient to calculate derivatives ijr/ds, c~v;~s, i~p,:dH, drjdt3 and @/ati along 

layers ‘II, = const and ti = const by the three-point scheme with varying pitch proposed 
in [8]. This ensures a stable solution of the Cauchy problem in the elliptic region. The 

proposed scheme is of second-order accuracy in all directions. 
The examination of system (1.1) - (I. 7) shows the possibility of applying it in the 

calculation of the practically important twisting flows by using the difference scheme 

proposed in [8]. In fact, by assuming that all flow parameters (except v) are functions 
of only two independent variables s and q, and that R = x3 , from (1.3) we readily 
obtain 

S’ (.A I#) = 
TDI) is, $) rn (SO, $) 

r (83 4) 
(3.(i) 

where wO (soI I#) and r. (s,,, 9) are the values of functions w and r in the reference plane. 
From Eq. (1.5) then follows that 

q~zfl+S ~ 
s 

w C.7, IN rls 
Tl‘ (X7) 

8” 

and, consequently, that @/ 86 = 1. The form of Eqs. (1.1) (1.2) and (1.4) is now 
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exactly the same as in the axisymmetric case, except that the expression for G (8, $j 
has the term 31 P added to it which, in accordance with (3.6) is a known function 
of **and that wa is to be taken into consideration in the expression for u . The differ- 
ence scheme described in [8] is used for calculating such flow. 

I N I 

1 n 
2 I 

” 

Fie, 2_ 

In conclusion we examine some examples of calculating sub- and supersonic flows in 
nozzles and channels of varying cross sections. First, let us consider an axisymmetric 

flow free of twist. The proposed here difference scheme was used in [ll] for investiga- 
ting the flow in annular nozzles of various shapes. 

Three-dimensional flows were calculated exclusively by the asymptotic formulas 

(2.10) which provide a qualitative appraisal of nozzle geometry and of the distribution 

of parameters. Results of these calculations are shown in Figs. 2 and 3. 
In Fig. 2 is shown a nozzle which up to its minimum cross section is axisymmetric 

and close to elliptic in two planes downstream of it. These cross sections have been 
drawn for s - conat. At the outlet plane s = 2 the ratio of the cross section semiaxes 
is equal 1.5. In the calculation s,, = 0, k = 2 , E = 6.0875, y = 1.4, r. = 0 and 
R=c*, were assumed. and u,, was defined by formula 

“0 @) q = ’ + 
(1 - u,) (G, - 1) (e-‘! b - 1) 

(i _ Ucp) e-~, b j_ (;, _ 1) (3.6) 

where u, = 0.1, ii, = 1.9 and i/b = 3.5. In this Figure is also shown the locus of 

points t) = con&, i.e., the projections on the yz -plane of secondary stream surfaces 

and the ratio pgplo at various cross sections in terms of 6. The presence of gas leakage 

from plane e = u to plane ?/ = 0 is noticeable. 
The results of calculations of a nozzle which is axisymmetric up to its minimum cross 

section has a single plane of symmetry, and a noncircular outlet cross section downstream 
aresimilarly presented in Fig. 3. It shows, as previously, the shape of various cross sect- 

ions at 6 = const. The axisymmetric nozzle geometry for the same initial distribution 

is shown there by dotted lines. In calculating this variant it was assumed that So = 09 
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k=1,~=0.175,y=~~4,r~=OandR(s) = oo,and rco (s) was determined by formula 
(3.8). In this case gas ieakage occurreo from plane cp = 0 to plane rp = 180* It is sig- 

nifmnt that the center of gravity of cross section shifts with increasing s to the left 

b 

3 A? f n --f - z 2 
Fig. 3 

of its position in the critical cross section. This results in a twist of the nozzle geomet- 
ric axis and the appearance of a side force. 
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Small steady oscillations of a perfect incompressible liquid in a rigid vessel are 
examined. Although this problem was fairly thoroughly investigated [l - 31, the 

determination of high frequency oscillations and of their form in a liquid in ves- 
sels of arbitrary shape presents considerable difficulties. 
A simplified approximate method, whose accuracy increases at higher frequencies 

is proposed for solving this problem. It is shown on the example of several prob- 

lems that for practical purposes this method can be used for the full range of fre- 

quencies. Estimates of the lower and upper bounds are given in some of the pro- 

blems. 

1. The velocity potential @of free oscillations of liquid satisfies the Laplace equa- 
tion with boundary conditions [4] 

Aa-0 inV 
aa --- 
az “;;” 4 = 0 ( h2 = wy ) along 2, 

am an = 0 along S (1.1) 

where S is the wetted part of the vessel surface, 2 is the free surface of the unperturbed 
liquid, V is the region bounded by the surface s + 
f 2, 6XD / dn is a derivative along the normal to 
S, R is a constant of dimension length ( a character- 
istic dimension of the cavity), w is the angular osci- 

Y llation frequency, g is the acceleration of gravity, 
and the direction of the 02 -axis is opposite to that 
of the gravity force vector (Fig. 1). 

Let us establish a certain property of function @ for 
h + 00. Assuming that functions in Green’s formula 

Fig. 1 are equal to@,with the use of (1.1) we obtain 

Hence 


